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We obtain a pointwise estimate of the deviation of a function from her Hermitian
interpolating polynomial. :C 1994 Academic Press. Inc.

1

The well-known Whitney Theorem [1] allows one to evaluate the
largest deviation of a continuous function I from the algebraic polynomial
p of degree ~n - 1 which coincides with I at n equidistant points
x 1 =a<x2< '" <xn=b. Namely,

(
b-a)max I/(x)-p(x)1 ~Cwn 1;-- ,

a~x~b n
(A)

where wn(f; .) is the nth-order modulus of smoothness for f
It is clear that the value of I/(x) - p(x)1 is essentially smaller than the

largest deviation when x is close to a node of interpolation. Such estimates
of the deviation taking into consideration the position of x (pointwise
estimates) were earlier obtained in the particular case of two nodes, they
are both the endpoints of the interval, having the same multiplicity r.

First, for r = 1 A. F. Timan and L. I. Strukov in [2J proved that for any
f E C[ - 1; 1] and x E [ - 1; 1]

(B)

Then, for any natural r we proved in [3 J that for any IE C' - 1 [ -1; 1J
and x E [ - 1; 1]

If(x)-p(x)1 ~CAl-x2)'-1Wr+l (/(r-I); r: 1 (I_X2)1/(r+l} (C)
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In this paper we investigate the error of Hermitian interpolation with
any nodes and with arbitrary distribution of multiplicities in the nodes. The
pointwise estimate (D) obtained here is a direct generalization of the
inequality (C), this estimate also gives some refinement to the Whitney
result (A).

In the next section we introduce necessary notations and formulate the
main result of the paper.

2

In what follows a and b (a < b) are given real numbers; IIIII means
II I II qa, b]; &t is a linear space of algebraic polynomials of degree
~k; wk(f;h)=suPo,,;r";h{ILl~/(x)l;x,x+khE[a,b]}, where Ll~/(x)=

L~~o(-lr (:)/(x+vt).
Let XI' X2"",Xn be a set of nodes such that a~xI~x2~ ... ~xn~b

and let rI' r2, ... , rnEN be the corresponding multiplicities. We denote
r=r l +r2+ ... +rn, f=max{r t ,r2, ...,rn}, r;=min{r j,f-l}; AI(x)=
n7~1 (x-x;)<, a(x)=nj:ri~f(X-Xj), a=maxa,,;x,,;bla(x)1 and finally
A(x)=AI(x) a(x).

We will formulate the main result making use of these notations.

THEOREM. Let IEC-I[a,b] and PEf!J,._1 be such that p(V)(x;)=
f(v\(x;), v = 0, 1,2, ..., r j - 1, i = 1, 2, ..., n.

Then there exists a constant C > 0 depending only on the position of the
nodes in [a, b] and on their multiplicities, such that lor every X E [a, b] the
following inequality holds

(
. b-a (a(x))I/(r-f+I))

I/(x)-p(x)I~CIAI(x)lwr_f+1 I(r-I);r_f+l -a- . (D)

In Sections 3-6 we state some lemmas used in the proof of the main
theorem. In the sequel it will be convenient to use the following notation

{
I,

[x, p] =
x(x + 1) ... (x +P - 1),

3

p=o
p=I,2,3, ....

In the next two lemmas we put mE N, XI ~ ... ~xm' k l , ••• , kmE N, k=
k l +k2+ ... +km, tP(x) =n7'=I (x-xY'·
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LEMMA 1. Let p E No = N u {O}. Than the inequalities are valid

33

and

Proof By Leibniz formula

d P m 1

dx P,Ill (x - X,)k,
" p! nm (-IV' [k;,p;]
1... P " (x )k, + P,PI + + Pm ~ pl' .. ,Pm' ,_ I X - I

= (-1 V p!
Pl+

" nm _1 [k;, pJ.
1... p ! (x _ X .)k, + P,

o. + Pm = P i = 1 , I

In particular, if Xl =X2= ... =xm=a then

d P 1 "rIm 1 [k;, p;]- = (- 1V p! 1... - --"-'-"-;-~
dxp(x-a)k PI+.... p!(x_a)k,+Pi'

+Pm=P 1= 1 I

Therefore, for x> X m

and for x<x\

LEMMA 2. Let p,qENo,q~k+p,e>O,

and

Then for (x, s) E H = HI U H 2 the following inequality holds

I
dP(X-S)ql 1 min(p,q)(P) .. .
dx P ct>(x) ~ek+p-q ;~o i [q-Hl,l][k,p-l].
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Proof If (x, S) E HI then Ix - sl ~ x - x m. Hence according to Lemma 1

I
dP(X_s)ql~min(p,q)(P) " ,Ix-sl q

-
i

dx P ct>(x) "" i~O i [q-l+l,l][k,p-l] (X-Xm)k+p-i

I min(p, q) (P) " ,
~ (_ )k + P_ q I . [q - I + 1, I] [k, p - I].

X X m i=O I

It remains to note that x - Xm ~ e.
The case (x, s) E H 2 can be considered in the same way.

4

Let a~xI <x2< ... <xn~b; r t ,r2, ... ,rnE N, r=L7~1 ri, A(x)=
n7~ 1 (x-x;)r,. We denote by G(x, s) Green's function for the generalized
boundary value problem:

y(r)(x) = A(x); v=O,l, ...,r;-I, i=I,2, ... ,n.

LEMMA 3, Letj1.E{O,I, ... ,r-l},jE{l, ... ,n}. We denote

Then there is a constant Dj , J1. such that the following inequality

1

0 1' I Ix-sl r
-I'-l

osJ1. G(x, s) ~ D;, I' IA(x)1 + XEj(X, s) (r _ j1. _ I)!

holds for all s E (xj ' Xj +1), X E [a, b] (XE denotes the indicator of the set E),

Proof For every fixed s E (xj ' xj+ d

G(x, s) = {gl,S(X)
g2. s(x)

for a~x~s~b,

for a~s~x~b,
(1)

where gl,,, g2,sE&:'_I, gl,s is divisible by the polynomial A}~(x)=,

n{~I(x-x;)", g2,s(X) is divisible by A/(x)=I17~j+l(x-xir' and
g2, ,(x) - gl.,(x) = (x -s)'-I/(r -1)1.

It is clear that Pl,s=gl.s/A j- E&:'/_l, P2.s=g2.slA / E&:'J-- I , where
rj - =r l + .. , +rj and r/ =rj +1 + ... +rn-
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(2)

The polynomials PI, sand P2, s are uniquely determined by the condition

+ _ (X-S)'-l
A j (x)P2,s(x)-A j (X)PI,s(X)= (r-I)!

since A/ and A j - are relatively prime. The equality (2) can be represented
as a system of linear equations in unknowns IX;(S), fJ;(s), the coefficients of
the polynomials PI,S' P2,$" Solving this system we find that IX;(S), fJ;(s) are
algebraic polynomials of degree < r - 1 and hence PI, sand P2, s are
algebraic polynomials of two variables.

By differentiating both parts of the relation (2) we obtain

+ 01' _ 01' (-l)l'(x-sy-I'-1
A j (x)osl'P2.,(x)-A j (X)OSI'PI,,(X)= (r-J1-I)! (3)

Let x;::: (xj + xj + d/2. From (3) we find for functions

A/(x) 01' 1 (-I)!«x-sy-I'-I
zs(x) = Aj- (x) as I' P2. s(x), <Ps(x) = Aj- (x) (r - J1- I)!

that

Hence

Moreover, (ov/OXV)z,(x;)=O for v~r;-I, i=J+I, ...,n. This means that
z,(x) is equal to its deviation of the function <pAx) from the Hermitian
interpolating polynomial with r;-fold nodes at the points Xi> i = J+ 1, ..., n.

From the properties of divided differences it follows that

I
1 01' I 1 (,+) +

Aj-(X)OSl'g2.S(X) =lzs(x)I~(r/)!II<Psj IIc[(xj+xj+tl/2;b]IA j (x)l·

Therefore, for every x;::: (xj + xj + I )/2 and s E [xj , x j + I] we have

l ~g2S(X)I~_I- 1 max I 0'/+ (X-s)'-I'-IIIA(X)I.
as I' • (r+)!(r-J1-I)! y';;s,,;;xj+! OX'j A~(x)

j X;;>(Xj +Xj+ll/2 j

In view of Lemma 2 we obtain that for such x and s

(4)
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D;' fI = -(-+-)-'-(-~----l-)-' ( 2_ ) I" + 1
rj . r fJ. . X j + 1 X j

min(r/,r-p.-l) +

X L (r j
. ) [r - fJ. - i, i] [r, r/ - I].

;~ 1 I

In the same way for x ~ (X j + X j + d/2 and S E [Xj' Xj+ 1]

where

It remains to note that inequality (4) is valid on the set E; and that

(5)

on EJ.

Therefore,

on EJ.

Similarly,

on E).

It remains to use relation (l) and to denote

Remark 1. If a<x 1 and sE(a,xd then G(x,s)=O for x";j;s and
G(x,s)= -(x-s)'-l/(r-l)! for x~s. Similarly, if xn<b and sE(xn,b)
then G(x, s) = (x-s)'-l/(r-l)! for x ~s and G(x, s) =0 for x ~ s.

Remark 2. In what follows we assume that G(x, s) = 0 when s < a or
s> b and that at each point of removable discontinuity the function G(x, .)
is defined by continuity. In particular, G(x;, . ) == 0 for every i.
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LEMMA 4. For fixed xE[a;b] we consider a function gAs)=G(x,s),
where G(x, s) is Green's function from Lemma 3. We assert that

(1) gA·) is a piecewise-polynomial function of degree ~ r - 1 with the
knots at x, XI' X2' .•. , Xn, a, b;

(2) gxEC-f-I(IR);

(3) there exists a constant D > 0 depending only on the position of
nodes on [a, b] and on their multiplicities, such that for any fixed X the
inequality Var~C(Jg~-f)]~D IAI(x)1 holds.

Proof The first part of the assertion is already proved and we pass to
part 2.

Suppose that f E C(IR) and p denotes the Hermitian interpolating poly
nomial for f with nodes Xi of multiplicities ri, a~xI < ... <xn~b. Let
y=f-p. Then

Therefore,

and v=O, 1, ... , ri-l, i= 1, ..., n.

y(x)= j'XJ G(x,s)f(r)(s)ds= IC(J gAs)j<r1(s)ds.
-00 -00

We transform the last expression by performing r times the integration by
parts (such a transformation is admissible because of the first assertion of
this lemma). This implies that for every x¢ {a, b, XI' '" x n }

y( x) = ~t: (- 1)' - I [ 0" v. Aa) fIr - v - 1)(a) + 0" v. Ab) fIr - v - 1)(b )

+ O"v.Ax)f(r-v-l1(x) +it O"v.Ax") f(r-v-I)(X,.)J (6)

where 0" v. At) = g~v)(t + 0) - g~)(t - 0).
On the other hand, by the interpolation formula the right-hand part of

(6) contains only the terms with j<v)(x i ), v = 0, 1, ... ri - 1, i = 1, ..., n, as is
evident from the following argument.

There are functions in C(IR), even algebraic polynomials, for which all
the valuesj<V)(a),f(V)(b),f(V)(x),f(V)(x i ) (v::;r-l, i::;n) vanish except one
of them (arbitrarily taken) equaling 1. Therefore, O"v.Aa)=O"v.Ab)=O,
v::;r-1. 1 O"v,Ax)=O for v::;r-2 and O"r_I,Ax)=(-l)'. Finally,

1 Thus, even if Xl#- a or x2 #- b the memebers in (6) depending on a or b may be omitted.
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O"v,Ax;)=O for v:'(,r-r j -l, i=I,2,,,,,n. This implies the continuity of
g~V)( . ) for v= 0, 1, "., r - r - 1.

Now we pass to the proof of the last assertion. Taking into account that
O",_f. ..{a)=O",_f,Ab)=O we can write

If r = 1 (i.e., in the case of Lagrange interpolation), then r - r + 1 = rand
consequently the last integral equals O. Comparison of the equality (6) with
the Lagrange interpolation formula shows that in this case O"'_f.Ax)=
(-I)', O"'_f,Ax;)=(-I}'-I(x), where Ij is the ith fundamental
polynomial for the nodes Xl' ... , X n of multiplicity 1. Therefore, for r= 1

where is D = 1 + L7~ 1 II/ i ll.
Now let r~ 2. In this case 0"r _ f, Ax) = 0, By Lemma 3 the right-hand

sum in (7) is not greater than D I IA(x)! + minj (Ix - xj If - I/V - I)!), where
D 1 = D I,,_ f + 2 "L;::i D j , r- f + D n , r- f' and the integral in (7) by the same
lemma is not greater than D 2 IA(x)! +minj (!x-xX- 1/(r-l)!, where
D 2 =2"L;::i (xj+l-xj)Dj,r_f+I' Hence,

Since IA(x)I=la(x)IIA1(x)l:'(,aIA1(x)l. it remains to estimate the
quotient t/!(x) = minj Ix-xjlf-l/IAI(x)l.

We have t/!(x)=(Ix-x;if-I-r;/fl k",,jlx-Xkl'k) on segment ,1 i • where
,11 = [a; (Xl +x2 )/2J, ,1 j = [(x j _ 1 +x;)/2; (x j +x j + I )/2] for i=2, ..., n-l
and ,1 n = [(x n _ I + X n )/2; b]. It is easy to see that function t/J(x) is bounded
on [a, b], the number t/J = maxa,,;x,,;b t/J(x) depends only on the multi
plicities of nodes Xj and on their position on [a; b] and that

min Ix-xjlf-l:'(,t/J IAl(x)l.
]

Now from (8) and (9) follows the inequality

where D = (D 1 + D 2 )a + 2t/J/V - I)!.
The proof of Lemma 4 is complete.

(9)
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LEMMA 5. In the notation of the theorem for every x E [a; b] the
following inequalities are valid:

If(x)-p(x)1 ~~ Ilf(r)IIIA(x)1 if fEC[a;b], (10)
r.

If(x)-p(x)I~D"f(f-I)IIIA!(x)1 if fECf-l[a;bJ, (11)

(D is the constant from the Lemma 4).

Proof By the properties of divided differences we have first,

f(x)-p(x)= [f; XI' ... , XI' ... , x n , ..., x n ] A(x),

r I times, ..., rn times

and secondly, iffE C[a; b], then there exists ¢ E [a; b] such that

1
f(x) - p(x) = - f(r)(o A(x).

r!

This implies the inequality (lO).
Passing to the second assertion of the Lemma 5 we prove for any

fE Cf-l[a; b] that

f(x)-p(x)=(_l)r-f+! rf(f-I)(s)d[g~-f)(s)]. (12)
a

It is easy to see that it suffices to obtain the representation (12) for any
function from C[a; b]. But for such a function

f(x)-p(x)=rf(r)(s)gx(s)ds=(-ly-frf(f)(s)g~-f)(s)ds
a a

= (_1)r-f+ I rflf-I)(s) d[g~-f)(S)]
a

(when integrating by parts we make use of the properties of gA·) from
Lemma 4).

Now from the representation (12) it follows by Lemma 4 that for any
fEC-I[a;b]

If(x) - p(x)1 ~ II f(f- 1)11 Var':' oc [g~- f)] ~ D II f(f- 1)11 IA I (x)l.

Lemma 5 is proved.
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In order to obtain the main theorem we use here, just as in our previous
paper [3], one more auxiliary result.

LEMMA 6. For lEN 0' kEN, and m = 1+ k let us consider all possible
representations 011 E C/[a; b] in the lorm 1=10 + II, where 10 E C/[a; b],
11ECm[a;b]. Then lor any positive numbers Ao,A,h (h~(b-a)/k) the
lollowing inequality holds

where Bk depends only on k.

This lemma may be considered as known (see, for instance, the work
of Yu. A. Brudnyi [4]). For the proof one may also consult the above
mentioned paper [3] (see the proof of the Lemma 5).

7

Prool 01 the Theorem. Let us consider a linear operator L on
c- 1 [a; b], such that (in notations of the Theorem) Lf = y= I - p. If we
represent I arbitrarily in the form 1=/0+/1' where loEC

f
- 1[a;b],

II E C [a; b] than by applying Lemma 5 we obtain for x E [a; b]

ILI(x)1 ~ ILlo(x)1 + ILldx)1 <D 11/6'-I)IIIA 1(x)1 + Il/r IA(x)l.
r.

Therefore,

where h(x) = «b - a)/(r - f + 1)(la(x)l/a)l/(r-f+ I) (we remind the reader
that a=maxa';x';b la(x)1 and thus O<h(x)~«b-a)/(r-f+1))). Then
Lemma 6 implies

where the constant C = D+ (a/r!) Br_f+1«r-f+ 1)/(b-a))'-f+1 depends
only on the nodes of interpolation and on their multiplicities.

The theorem is now proved.
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